Configure the Prometheus receiver to collect NVIDIA NIM metrics

Learn how to configure the Prometheus receiver to collect NVIDIA NIM metrics.

You can monitor the performance of NVIDIA NIMs by configuring your Kubernetes cluster to send NVIDIA NIM metrics to Splunk Observability Cloud.

This solution uses the Prometheus receiver to collect metrics from NVIDIA NIM, which can be installed on its own or as part of the NVIDIA NIM Operator. For more information on the NVIDIA NIM Operator, see About the Operator in the NVIDIA documentation. NVIDIA NIM exposes a :8000/metrics endpoint that publishes Prometheus-compatible metrics.

Complete the following steps to collect metrics from NVIDIA NIMs.

To use the Prometheus receiver to collect metrics from NVIDIA NIMs, you must meet the following requirements.
  • You have installed NVIDIA NIM using one of the following methods:

  • You have installed Prometheus for scraping metrics from NVIDIA NIM. For instructions, see Prometheus in the NVIDIA NIM documentation.

  1. Install the Splunk Distribution of the OpenTelemetry Collector for Kubernetes using Helm.
  2. To activate the Prometheus receiver for NVIDIA NIM manually in the Collector configuration, make the following changes to your configuration file:
    1. Add prometheus/nvidianim to the receivers section. For example:
      prometheus/nvidianim:
        config:
          scrape_configs:
            - job_name: nvidianim-metrics'
              metrics_path: /metrics
              scrape_interval: 15s
              static_configs:
                - targets: ["localhost:8000"]
      
    2. Add prometheus/nvidianim to the metrics pipeline of the service section. For example:
      service:
        pipelines:
          metrics:
            receivers: [prometheus/nvidianim]
  3. Restart the Splunk Distribution of the OpenTelemetry Collector.

メトリクス

NVIDIA NIM で使用可能なメトリクスについて確認します。

NVIDIA NIM で使用できるメトリクスについて、詳細は NVIDIA ドキュメントの「Observability for NVIDIA NIM for LLMs」をご確認ください。

属性

NVIDIA NIM で利用可能なリソース属性について確認します。

NVIDIA NIM では、次のリソース属性を使用できます。
リソース属性の名称タイプ説明値の例
model_name文字列デプロイされたモデルの名称。

meta/llama-3.1-8b-instruct

computationId文字列一意の計算識別子。comp-5678xyz

Next steps

How to monitor your AI components after you set up Observability for AI.

After you set up data collection from supported AI components to Splunk Observability Cloud, the data populates built-in experiences that you can use to monitor and troubleshoot your AI components.

The following table describes the tools you can use to monitor and troubleshoot your AI components.
Monitoring toolUse this tool toLink to documentation
Built-in navigatorsOrient and explore different layers of your AI tech stack.
Built-in dashboardsAssess service, endpoint, and system health at a glance.
Splunk Application Performance Monitoring (APM) service map and trace viewView all of your LLM service dependency graphs and user interactions in the service map or trace view.

Splunk APM を使用して LLM サービスをモニタリングする