Retrain a predictive model in ITSI
It is good practice to continuously monitor your incoming data, including historical KPI and service health score values, and retrain a model on newer data if KPIs or entities are added, removed, or changed. For example, if you add an Oracle database to a service, it is best practice to retrain the service's model because the new architecture will create new KPI relationships.
For a model to accurately predict health scores in IT Service Intelligence (ITSI), the data it's making predictions on must have a similar distribution as the data on which the model was trained. Because data distributions are expected to drift over time, deploying a model is not a one-time exercise, but a continuous process.
When to retrain a model
If monitoring your services for changes is too time consuming, a simpler strategy is to train the model periodically. For example, to capture changes to KPIs or service architecture, you might retrain a model every 10 days.
Retrain a service's model in the following situations:
- You added a new KPI or entity to the service.
- You removed or changed a KPI or entity in the service.
- You restored your ITSI configuration (ITSI does not restore MLTK lookup files).
- You notice that the model's performance is starting to degrade.
Before you retrain a model, test it on recent data to evaluate whether it needs to be retrained.
Prerequisites
- To retrain a model, the model must be saved in the service definition. For more information, see Train a predictive model in ITSI.
- Make sure you're viewing the Predictive Analytics tab from the service definition.
Steps
- Test the model on recent data:
- From the Predictive Analytics tab of the selected service, navigate to the Test a Model section.
- Change the test period to a recent time range. Changing the time period retests the model on a recent set of data to determine if it needs to be retrained. You must test on at least 90 minutes of data.
Note: The appropriate test period varies based on your specific data. For example, if a new KPI was added yesterday, test the model on the last 24 hours. If an outage occurred last week, test it on the last seven days.
- Select the model in the Regression Models or Classification Models table to populate the model's metrics.
- Analyze the model's metrics. If the metric values have dropped to unacceptable levels for your business, consider retraining the model.
- Retrain the model on new data:
- Select the same algorithm and algorithm type as you used to train the model. You can modify the time period and training/test split.
- Click Train. The existing model is replaced by the retrained model.
- Reevaluate the model's metrics to ensure that they are at acceptable levels. For information about evaluating models, see Test a predictive model in ITSI in this manual.
- Click Save to save the retrained model into the service definition.
The following diagram illustrates the workflow for retraining a model: